SEEC Data Brief

ISSN 2153-3970 (print)
ISSN 2153-3989 (online)

Student Enrollment and Engagement through Connections

IOWA STATE UNIVERSITY

Issue 8, December 2011

Basic Program — Empirical Research Results

Marcia Laugerman, Diane Rover, Monica Bruning, Frankie Santos Laanan, Steven Mickelson, Mack Shelley, Mary Darrow, and Jason Pontius

Introduction

Academic coursework common to all Iowa State University engineering majors is called the Basic Program. These core courses are listed in Table 1. Earlier research (SEEC Data Brief: Data Collection and Analysis Project—Retention) showed a correlation between academic success in engineering at Iowa State and grades in Basic Program

courses. An engineering community college transfer student has the option of taking any of these courses at the community college (if available) or at Iowa State. This brief will detail empirical information related to success in engineering at Iowa State based on academic factors for community college students.

Table 1
Iowa State University College of Engineering Basic Program

Credits	Course	Description
4	Math 165	Calculus I
4	Math 166	Calculus II
4	Chem. 167 or 177	General Chemistry I
5	Phys 221	Introduction to Classical Physics I
3	English 104 or 150	Critical Thinking and Communication
3	English 105 or 150	Written, Oral, Visual and Electronic Composition
3	Engineering 160 or Aer E 160, C E 160, Cpr E 185, E E 185, S E 185, or I E 1480	Engineering Problems with Computer Applications Lab
Required	Engineering 101	Engineering Orientation
0.5	Lib 160	Library Orientation
26.5	Total Credits	

Dataset Demographics

The dataset for this study included 1,191 lowa Community College (IA CC) transfer students who enrolled in lowa State's College of Engineering from Fall 2002 through Fall 2008. The demographics were as follows:

- Female: 81 or 6.8%
- Black: 40 or 3.5%
- White: 967 or 84.5%
- Hispanic: 18 or 1.6%
- American Indian: 10 or 0.9%
- Asian: 43 or 3.8%
- Hawaiian: 0
- U.S. Citizen: 1,106 or 92.9%

As of Fall 2010, for this group of 1,191 students:

- 51.3% (611) graduated or were still retained in engineering
- 16.1% (192) left engineering but had either graduated (in non-engineering majors) or were still retained at ISII
- 32.6% (388) left both engineering and ISU

Sample of Dataset

For the graduation evidence, a sample of 472 IA CC transfer students who entered lowa State's CoE from 2002 through 2005 was utilized. These cohorts of students were selected to provide a minimum of six years for students to graduate. An earned degree in engineering was the dependent variable. The demographic information for this sample is as follows:

• n = 472

Female: 33 or 7.0%
Black: 12 or 2.7%
White: 366 or 83.0%
Hispanic: 6 or 1.4%
American Indian: 5 or 1.1%

Asian: 25 or 5.7%Hawaiian: 0

• U.S. Citizen: 435 or 92.4%

As of Fall 2010, for this sample of 472 students, 53% graduated in engineering.

There was no statistical difference in demographics between the entire dataset of 1,192 students and the sample cohorts of 472 students. Table 1 below shows the demographics of the IA CC admits into the College of Engineering compared to all students that entered the College of Engineering between 2002 and 2008.

Table 2
Demographics of Data

						American			U.S.
Admit Group	n	Female	Black	White	Hispanic	Indian	Asian	Hawaiian	Citizen
Community College Transfers 2002-2005	472	7.0%	2.5%	77.5%	1.3%	1.1%	5.3%	0.0%	92.2%
Community College Transfers 2002-2008	1191	6.8%	3.4%	81.2%	1.5%	0.8%	3.6%	0.0%	92.9%
All Entering Engineers 2002-2008*	12882	14.5%	2.5%	80.3%	2.6%	0.3%	4.2%	0.0%	91.3%

^{*}Includes IA CC Transfers

Table 2 shows that there is no difference in the demographics of the students in the study except the percent of females entering engineering from lowa community colleges is significantly lower than that of all admits to engineering.

An engineering transfer student has the option of taking some or all of the Basic Program courses at the community college and some or all of these courses at lowa State. Therefore, the graduation rates in Tables 3 and 4 are separated by the institution where students took the basic program course(s).

Table 3
Graduation Rates in Engineering by Iowa State Basic Program Grades

Iowa State Basic Program Grades

GPA	Graduation Rate	n
less than 1.0 GPA	0%	40
1.0 - 2.0 GPA	19%	62
2.0 - 2.5 GPA	48%	60
2.5 - 3.0 GPA	53%	75
3.0 - 3.5 GPA	68%	73
3.5 - 4.0 GPA	82%	65

Fall 2002-2005 IA CC Transfer Students

Table 3 shows actual graduation rates in engineering by the GPA achieved in Basic Program courses taken at Iowa State. This illustrates that a GPA of a 3.0 or better in the Basic Program courses taken at Iowa State increases the graduation rate to 68% which is a significant improvement over the average graduation rate of 53% for this same group.

Table 4
Graduation Rates in Engineering by IA
CC Transfer Basic Program Grades

Transferred Basic Program Grades

GPA	Graduation Rate	n
less than 1.0 GPA	-	-
1.0 - 2.0 GPA	0%	12
2.0 - 2.5 GPA	33%	67
2.5 - 3.0 GPA	50%	115
3.0 - 3.5 GPA	50%	139
3.5 - 4.0 GPA	64%	139

Fall 2002-2005 IA CC Transfer Students Transfer GPAs do not include F grades.

Table 4 shows the actual graduation rates in engineering by the GPA achieved in the Basic Program courses transferred from the community college. This illustrates how students with a GPA of better than 3.5 in the Basic Program courses transferred from IA CCs have a graduation rate of 64%. This is a significant improvement over the average graduation rate of 53% for this same group. Note that GPAs less than 1.0 from the community colleges were not recorded in the dataset. F grades are very rarely transferred to lowa State. There was less differentiation in the graduation rates based on transferred Basic Program GPAs.

Table 5
One and Two Year Retention Rates by Admit Status and Grade Point Averages

		Fal	l 2002 - Fall	2009 data			Fall 2002	2 - Fall 2008 d	lata
Admit Status	First Fall GPA	First Year GPA	Transfer GPA	ENGR Retention after 1 year	ISU Retention after 1 year	n	ENGR Retention after 2 years	ISU Retention after 2 years	n
Iowa CC transfer	2.31	2.42	3.06	66%	81%	1,011	52%	70%	858
Non-Iowa CC transfer	2.66	2.70	3.05	73%	82%	271	57%	65%	231
Four-year College transfer	2.75	2.86	3.04	70%	80%	714	50%	59%	598
High School Admit	2.72	2.78	3.46	74%	89%	9,065	61%	81%	7,737

Table 5 shows important retention data by admit status and GPA. In recent SEEC research, first fall GPA, first year GPA, and transfer GPA have emerged as significant predictors of success in engineering. This table includes both retention in engineering and retention at lowa State. Both are important measures of success for

students that enter the College of Engineering at Iowa State. In addition to first fall, first year and transfer GPAs, previous SEEC data briefs recommend participation in learning communities and Engineering Admissions Partnership Programs (E-APP), to further increase success in engineering.

Table 6

Grade Comparisons in Key Engineering Courses by Admit Status
Fall 2002-Fall 2010 admits to the College of Engineering

Admit Status	Math	165 GPA	Math	166 GPA	Phys 221 GPA		
Admit Status	at ISU	Transferred	at ISU	Transferred	at ISU	Transferred	
Iowa CC transfer	2.47	3.06	2.60	3.08	2.40	3.01	
Non-Iowa CC transfer	2.87	3.11	2.71	3.08	2.44	3.02	
Four-year College transfer	2.95	3.10	2.94	2.96	2.68	2.87	
High School Admit	2.87	3.35	2.95	3.14	2.68	2.96	

Table 6 shows average grade points in key Basic Program courses by admit status to Iowa State. This shows the difference in key course grades (for unmatched pairs) between Iowa State and other transfer institutions. These courses are considered some of the most challenging in the Basic Program. This suggests that all groups of

students have the most difficulty with Physics 221, since the grades are the lowest among all groups of students. Note of caution: The Iowa State grades shown are inflated because all Iowa State F grades were dropped. This was to equalize the comparison since transfer students rarely transfer F grades.

Table 7

Background Characteristics of Students by Admit Status
Fall 2002-Fall 2010 admits to the College of Engineering

Adminston Tons	N	ISU Basic Program GPA		Math ACT Scores		High School GPA		CC Transfer GPA	
Admission Type		Mean	n	Mean	n	Mean	n	Mean	n
Iowa CC transfer	1,191	2.32	830	25.0	650	3.24	585	3.08	1,183
Non-IA CC transfer	355	2.72	254	25.3	89	3.34	122	3.07	349
Non-CC transfer	825	2.85	603	27.1	314	3.54	326		
High School Admit	10,511	2.71	8,997	28.0	9,849	3.63	10,441		

Table 7 shows the background characteristics by admit status to Iowa State. These must be interpreted with caution since the data only had background characteristics for about half of the transfer students. Also, the transfer institution is the one listed most recently on the transcript. It is common for a transfer student to have attended more than one college.

Conclusion

Taken together, Tables 5, 6 and 7 portray a more academically challenged group of students transferring from community colleges (either in-state or out-of-state) than either the non-community college transfer (4 year transfer) or the high school admit to the College

of Engineering. This may explain in part, why the success rates are lower for community college transfers, as shown in Table 5 and in previous retention data briefs.

These students are able to increase their success by increasing their grades in Basic Program courses-either at the transfer institution or at lowa State-as shown in Tables 3 and 4, and by increasing their overall transfer GPA as shown on Table 5. These students are also able to increase their success by increasing their first fall and first year GPA at Iowa State. Previous SEEC data briefs recommend participation in learning communities and Engineering Admissions Partnership Programs (E-APP), to further increase success in engineering.

SEEC TEAM

Principal Investigators

Diane Rover

Professor, Electrical and Computer Engineering lowa State University Email: drover@iastate.edu

Harry McMaken

Professor, Engineering and Math Des Moines Area Community College Email: hlmcmaken@dmacc.edu

Co-Principal Investigators

Monica Bruning

Senior Research Associate and Lecturer, Educational Leadership and Policy Studies Iowa State University Email: mbruning@iastate.edu

Frankie Santos Laanan

Interim Director, Center for Excellence in Science, Mathematics and Engineering Education Associate Professor, Educational Leadership and Policy Studies Iowa State University Email:laanan@iastate.edu

Steven Mickelson

Professor and Chair, Agricultural and Biosystems Engineering Iowa State University Email: estaben@iastate.edu

Mack C. Shelley

University Professor Political Science and Statistics Iowa State University Email: mshelley@iastate.edu

Senior Personnel

Mary Darrow

Transfer and E-APP Coordinator College of Engineering Iowa State University

Andrew Ryder

Research and Evaluation Scientist Research Institute for Studies in Education (RISE) Iowa State University

Karen Zunkel

Program Manager Program for Women in Science and Engineering Iowa State University

Other Personnel

Virginia Anderson

Information Assurance Center Electrical and Computer Engineering Iowa State University

Sandy Jennings-Hammond

Communications Consultant Iowa State University

Other Executive Team Members

Joel Johnson

Program Manager Engineering Academic/ Student Affairs Iowa State University

Marcia Laugerman

Graduate Assistant-Research Agricultural and Biosystems Engineering Iowa State University

Carlos Lopez

Graduate Assistant-Research Educational Leadership and Policy Studies Iowa State University

http://www.eng.iastate.edu/seec

The work reported herein is supported by the National Science Foundation, Science, Technology, Engineering and Mathematics Talent Expansion Program (STEP), Directorate for Education and Human Resources, Division of Undergraduate Education, Grant No. 0653236.

The SEEC Data Brief is published by the College of Engineering in collaboration with the Office of Community College Research & Policy (OCCRP) at Iowa State University. Established in 2004, the mission of OCCRP is to articulate and analyze the issues affecting policy and practice by conducting rigorous research which impacts students, faculty, administrators, and policymakers.

Diane Rover, Principal Investigator

Electrical and Computer Engineering 333 Durham Hall Iowa State University Ames, IA 50011 Office: 515.294.2819

E-mail: drover@iastate.edu www.engineering.iastate.edu/~drover/

Frankie Santos Laanan, Co-PI and Director

Office of Community College Research and Policy Educational Leadership & Policy Studies Iowa State University N243 Lagomarcino Hall Ames, IA 50011

Office: 515.294.7292 E-mail: laanan@iastate.edu www.cclp.hs.iastate.edu/occrp/

Collaboration between

