
Paper ID #6699

A structural equation model correlating success in engineering with academic
variables for community college transfer students

Dr. Marcia R Laugerman P.E., University of Iowa

Dr. Laugerman is a PE in Industrial Engineering with over 20 years of University teaching experience.
She is currently working as a research fellow in the Department of Teaching and Learning at the University
of Iowa on an Institute for Education Sciences project to increase critical thinking skills in science through
an inquiry-based instructional method. Her teaching and research interests are in STEM.

Prof. Mack Shelley, Iowa State University

Mack Shelley is a full professor at Iowa State University, where he holds the titled rank of University
Professor. He currently holds a joint appointment in the Department of Statistics and the Department of
Political Science. His research, grants and contracts, consulting, and teaching focus on applications of
multivariate statistical methods to problems in education, the social sciences, engineering, and other areas.
From 1999 to 2003 he was coordinator of research, and from 2003-2007 was director of the Research
Institute for Studies in Education at Iowa State.

c©American Society for Engineering Education, 2013



 

 

A STRUCTURAL EQUATION MODEL CORRELATING SUCCESS IN ENGINEERING 

WITH ACADEMIC VARIABLES FOR COMMUNITY COLLEGE TRANSFER 

STUDENTS 

Abstract 

Student Enrollment and Engagement through Connections is a collaboration between a large 

Midwestern university and in-state community colleges (CCs) to increase success of transfers 

into engineering. This study explores predictors of completing a BS in engineering for CC 

transfers through a structural equation model. The model was estimated using academic variables 

from both institutions.  The dataset includes 472 in-state CC transfer students admitted to the 

College of Engineering between 2002 and 2005. The model fits the data well (χ
2
=74.254, df=30, 

p<0.0001; RMSE=0.056, Comparative Fit Index=0.984, chi-square/df ratio=2.475). First spring 

University GPA and credit hours, CC transfer credits toward core engineering courses, first fall 

credit hours after transfer, first fall University GPA, and University core course GPA are 

significantly related to graduation in engineering. This research may help increase the success of 

CC transfers to engineering, emphasizing the importance of core engineering courses. 

Introduction 

 

This is an exploratory study to determine the strength of the relationships between core 

engineering coursework and graduation in engineering for community college (CC) transfer 

students. The longitudinal study accounts for the coursework taken at the CC prior to transfer as 

well as coursework taken at the University after transfer. The objective of the study is to create a 

structural equation model (SEM) to estimate the covariance structure based on hypothesized 

relationships between the academic variables and the outcome of graduation in engineering. The 

model provides a simultaneous analysis of relationships among the academic variables. The 

results of this study may be instructive to the CC administration, to academic advisors, and to 

students who are considering or already are pursuing a degree in engineering. . The purpose of 

this study, taken along with other informative qualitative studies, is to increase the success of CC 

transfers to engineering.  This research could further increase both the number and diversity of 

engineering graduates and contribute to workforce development and national economic strength. 

 

The model is developed based on academic and background variables for in-state CC transfer 

students who entered the College of Engineering at a large Midwestern State University (SU) 

during the fall semesters of 2002 through 2005. It follows CC transfer students longitudinally 

over a six-year period, allowing sufficient time for graduation. For these cohorts of students, 

49% graduated in engineering. It is important to note that transfer students are defined by the 

institution they attended immediately following high school graduation and prior to transfer, and 

not by the number of credits transferred. 

 

One problem in creating these models is obtaining data from both the sending and receiving 

institution. Unique in this study is the use of academic variables from both institutions. Other 

models based on academic integration variables have not included CC characteristics
1
. Nor have 

previous models been specific to graduation in engineering for CC transfer students. Taken 



 

 

together, these strategies provide a roadmap for success that proved to be influential for this 

sample of CC students. 

 

Key variables in determining graduation are based on performance in core courses in engineering 

and first-year performance after transfer. These core courses are offered at both the sending and 

receiving institution. In this study the core courses are identified as the Basic Program (BP) in 

engineering. All students must successfully complete the BP with a minimum C average (2.0 on 

a 4.0 scale) to graduate in engineering. This program consists of two semesters of calculus, one 

semester of chemistry, one semester of physics, two semesters of English, and one semester of 

engineering fundamentals with computer programming. These courses represent the most 

substantial barrier to achieving an engineering degree
1,2,3

. 

 

Background 

 

Recognizing the importance of increasing graduates in STEM fields, the National Science 

Foundation (NSF) has funded the Science Technology Engineering and Mathematics (STEM) 

Talent Expansion Program (STEP). One initiative of the STEP program is the Student 

Enrollment and Engagement through Connections (SEEC) project. SEEC is a collaborative, 

connection-based alliance between the SU and one of the in-state CCs. The purpose is to increase 

the success of CC transfers to engineering.  

 

There has been a recent trend of students turning to CCs for educational and professional 

advancement
4,5,6

. According to the American Association of Community Colleges (AACC), CCs 

provide a local, affordable, and low-risk path to development and expansion of marketable 

skills
7
. The trend is especially strong for traditionally underrepresented populations: women, 

minorities, rural students, veterans, and older Americans
4
. These groups are becoming 

increasingly central to the United States’ mission to graduate more scientists and engineers
8
. 

However, many of these potential scientists and engineers leave this pathway before completing 

a four-year degree
9
. 

 

Understanding and addressing persistence at the CC level is a multi-faceted task that takes into 

account fluctuating state funds and a diverse student population
10

. In addition, the enrollment 

patterns of CC students are complex and may involve multiple transfers across several 

institutions
11

. However, the academic requirements in engineering that are universal for all CC 

students can provide a basis for analysis. 

 

Previous research suggests that models based on core-course academic variables are a key aspect 

in determining retention and graduation in engineering
1,2,3

. In addition, the first year of study in 

an engineering program has been shown to be critical to success. Levin and Wyckoff
3
 developed 

a freshman-year model that identified the best predictors of retention as grades in Physics I, 

Calculus I, and Chemistry I. 

 

Most students who leave engineering do so before they have successfully completed these 

difficult courses
3
. Previous studies have shown that students must acquire proficiency in these 

key foundational areas to succeed in engineering. For example, in a longitudinal study of over 



 

 

35,000 pre-engineering students at Purdue, 84% of those who left engineering did so before they 

completed their pre-professional program
2
. 

 

LeBold and Ward
12

 also found that the freshman year is critical to retention and that the best 

predictors of retention were the first- and second-semester grades and cumulative GPA. They 

found that students’ perceptions of their problem-solving abilities in mathematics and science 

were also indicative of retention. Budny et al.
2
 found a strong correlation between first-semester 

GPA and graduation rates in engineering. Whalen and Shelley
13

 also found that the most 

important variable indicative of retention in STEM fields is grade point average. They found a 

dramatic increase in six-year retention and graduation rates for as little as a 0.10 increase in GPA 

for STEM majors. Earlier research by Strenta, Elliot, Adair, Matier, and Scott
14

 found that low 

grades were the most common predictor for all students leaving science and engineering courses. 

 

Pre-college characteristics account for a relatively small but meaningful percentage of variation 

in retention rates
15

. However, research shows that pre-engineering success measures are weaker 

predictors of retention in engineering than are grades in core engineering courses
2,3

. Further, the 

combination of all first-year course grades, measured as end-of-second-semester cumulative 

grade point average, is a stronger predictor of success than is the grade in any single course. 

 

Multiple data analysis methods have been applied to predict retention and graduation rates by 

using academic and demographic variables. Conventional predictive models have used logistic 

regression. Other data analysis methods existing in the literature are summarized by Li, 

Swaminathan, and Tang
16

: 

 Stepwise/Hierarchical Multiple Regression 

 Longitudinal Data Analysis 

 Covariate Adjustment 

 Two-Step Design 

 Exploratory Factor Analysis 

 Discriminant Analysis 

 Classification Tree 

 

A strength of SEM over some other statistical techniques is that it is able to account for and 

remove the effects of two types or error: measurement error and residual error. Measurement 

error is created whenever data are gathered by means of a measuring instrument or process that 

has less than perfect reliability. Residual error is the amount of unexplained variation in the 

dependent or endogenous variables left after the independent or exogenous variables have 

accounted for as much variability as possible. Another strength of this SEM model is its ability 

to incorporate collinear variables yet provide significant effects in the expected direction, after 

accounting for collinearity present in the model. 

Research Questions 

What are the strengths of the relationships as determined by a SEM model, between academic 

variables in core engineering coursework and graduation in engineering for CC transfer students? 



 

 

How can these findings increase the success of CC transfers to engineering and inform 

workforce development strategies? 

 

Design/Method 

 

The SEM employed in this analysis was created with Analysis of Moments Structures (AMOS) 

software combined with SPSS statistical software using academic variables from both the 

sending and the receiving institutions. The academic variables consist of a student’s combined 

transcript-level data for course requirements in engineering. These include academic data that 

occur during the first year after transfer through completion of the BP in engineering. The model 

provides a simultaneous analysis of relationships among the academic variables and provides 

strength of relationship indicators. The dataset for this study includes 472 in-state CC transfer 

students who were admitted to the College of Engineering during the fall semesters of the 

academic years 2002 through 2005. Model worthiness is determined by root mean square error 

approximation (RMSEA), comparative fit index (CFI), and the ratio of the chi-squared fit 

statistic to the model degrees of freedom. 

 

In addition to the BP GPA at the sending and receiving institutions, the model uses the number 

of credits toward BP courses at both institutions as well as the number of credits and GPA for the 

first fall, first spring, and first year after transfer. These academic variables are hypothesized to 

correlate with graduation in engineering. The model identifies which academic variables are 

mediated through the BP GPA at the university and discovers which other academic variables are 

correlated directly with graduation in engineering. Other non-significant academic and 

demographic variables were dropped from the model; including the total number of transfer 

credits, the overall transfer GPA, gender, and the number of learning communities in which a 

student participated at the University. Note that a student may have transfer credit from other 

colleges when the institution she or he attended immediately before transfer was an in-state CC, 

and the number of credits and the GPA in core engineering courses are from the in-state CC 

only. This may help explain why the overall number of transfer credits and the overall transfer 

GPA were not significant predictors. 

 

The observed, endogenous variables in the model are: 

 Number of BP transfer credits from the sending institution (Tr BP Cr) 

 GPA in core-engineering courses from the sending institution (Tr BP GPA) 

 Number of first fall credit hours (after transfer) at the receiving institution (first fall Cr) 

 First fall GPA at the receiving institution (first fall GPA) 

 Number of first spring credit hours at the receiving institution (first spring Cr) 

 First spring GPA at the receiving institution (first spring GPA) 

 Number of first-year credit hours at the receiving institution (first year Cr) 

 First-year GPA at the receiving institution (first year GPA) 

 Number of core engineering course credits taken at the receiving institution (BP Cr) 

 GPA in core engineering courses taken at the receiving institution (BP GPA) 

 Graduation in engineering (EngGrad) 

 

The observed, exogenous variables in the model are: 



 

 

 ACT Composite score (act cmpst) 

 ACT English score (act engl) 

 ACT Math score (act math) 

 

Since the data analyzed in this study were collected on in-state community college transfer 

students in a Midwestern state where nearly all high school students take ACT rather than SAT 

for college admissions, the vast majority of students in our dataset transferred ACT scores as 

opposed to SAT scores. Missing data values for variables included in the model were imputed 

using a Bayesian multiple imputation method incorporated in SPSS. The unobserved, exogenous 

variables include error terms for each endogenous variable in the model. They represent the 

residual error that is left after the exogenous variables have accounted for as much of the 

variability as possible. 

 

Assumptions in the Design 

 

The estimation method used is this model is maximum likelihood (ML). ML assumes that the 

observations must be independent with multivariate normality for all continuous endogenous 

variables. This means we treat the 472 CC students in the study as being picked independently 

and representative of the population of CC transfer students. Although parameter estimates are 

relatively robust against non-normality, normality checks were performed on all endogenous 

variables using skewness and kurtosis values. Using a skewness value>|3| and/or kurtosis value 

>|10| to indicate non-normality
17

 all endogenous variables were sufficiently normally distributed 

to utilize ML estimation (see Table 1). 

Table 1 Assessment of normality 

Variable skewness kurtosis 

act cmpst .144 -.217 

act math .062 -.025 

Tr BP GPA -.212 -.877 

first fall GPA -.491 -.335 

Tr BP Cr_ -.203 -1.046 

IBP Cr_ .707 -.059 

first spring GPA -.555 -.427 

first fall Cr -1.416 2.308 

IBP GPA -.647 -.144 

first spring Cr -1.021 1.159 

EngGrad .059 -1.996 

first year Cr -.362 1.327 

first year GPA -.461 -.321 

act engl .170 .113 

 
  



 

 

Results 

 

The model, estimated by ML, demonstrates a reasonably good fit with the data (chi square 

=74.254, df=30, p<0.0001) and very good index metrics (RMSEA=0.056, Comparative Fit 

Index=0.991, chi-squared ratio=2.475). 

 

Although the chi-square test for goodness of fit is rejected, this does not undermine the value of 

the estimated covariance structure of the model, which is consistent with the sample covariance 

structure of the data. Whether this specific model is actually correct is not known, however, the 

estimated path coefficients are statistically significant (p<.05) and the directions of the 

relationships are as hypothesized. Prior research about the value of these variables in predicting 

success in engineering confirms the validity of the relationships estimated by the model. 

 

The model index metrics demonstrate a very good fit. In this model the RMSEA=0.056. 

According to Brown and Cudeck
18

 an RMSEA < 0.08 may indicate a good fit in relation to 

degrees of freedom and indicate a reasonable error of approximation. For the comparative fit 

index (CFI=0.991), Bentler
19

 suggests that CFI values close to 1 indicate a very good fit. The 

chi-square ratio (chi square/df=2.475) is consistent with the minimum discrepancy that several 

writers have suggested as a measure of fit. Carmines and McIver
20 suggest that ratios in the range 

of 2 to 1 or 3 to 1 are indicative of an acceptable fit between the hypothetical model and the 

sample data. 

 

Figure 1 shows the recursive path model for graduating in engineering (EngGrad). A recursive 

model means that no variable in the model has an effect on itself. That is, in the path diagram of 

the model, it is not possible to start at any variable and, by following a path of single-headed 

arrows, return to the same variable. 

Figure 1 shows six variables with significant or very nearly significant positive direct effects on 

graduation in engineering. They are: 

 Number of first spring credit hours (p=0.055) 

 Number of first fall credit hours (p<0.001) 

 First fall GPA (p=0.029) 

 Number of transfer credits toward BP (p<0.001) 

 First spring GPA (p<0.001) 

 Overall university BP GPA (p=0.062) 

 

Overall university BP GPA is included in the model since it also has a significant mediating 

effect on graduation. All of the variables correlated with graduation in engineering occur after 

transfer to the university, with the exception of the number of transfer credits toward BP courses. 

 

Figure 1 also shows four variables with significant positive direct effects on the overall 

university BP GPA, which becomes a mediating variable for graduation in engineering. They 

are: 

 ACT Math score (p<0.001) 

javascript:void(0)
javascript:void(0)


 

 

 Number of BP credits taken at the university (p<0.001) 

 First fall GPA (p=0.003) 

 First spring GPA (p<0.001) 

 

This is one of only three times a pre-college variable occurs in the model. The other times are 

ACT math correlating with the number of transfer BP credits, and the ACT composite score 

correlating with the transfer BP GPA. As expected, the ACT scores all vary with each other, as 

shown by the connecting arrows on the model diagram (see Figure 1). 

 

 

Figure 1 SEM Model 

Table 2 gives the regression weights for each statistically significant relationship. These 

unstandardized estimates are given in terms of the original metric of measurement for each 

variable. This estimate also can be thought of as the unstandardized effect size. It is followed by 

the standard error (S.E.), the p-value, and the standardized estimate that gives the magnitude and 

direction of effects measured in unitless standard deviations. 

 

For example, when the ACT mathematics score goes up by 1 point, the BP GPA goes up on 

average by an estimated 0.044 unit of GPA, holding constant all the other variables in the model. 

The p-value is determined by dividing the parameter estimate by its standard error. The p-value 

means that the regression weight for ACT mathematics in the prediction of BP GPA is 

significantly different from zero at the 0.001 level (using a two-tailed hypothesis test). The 

standardized estimate is 0.173, which means that when the ACT mathematics score increases by 

1 of its standard deviation units, BP GPA increases by 0.173 of its standard deviation unit. 

Table 2 also shows that the variables with the highest unstandardized effect sizes for determining 

the BP GPA are first spring GPA (0.425) and first fall GPA (0.303). These results measure the 

estimated increases in BP GPA that correspond with a one-point increase in first fall or first 

spring GPA, holding all other variables constant. The variable with the highest unstandardized 

effect size in determining graduation in engineering is the first spring GPA, with estimated 

unstandardized regression coefficient of 0.115. For a one-point increase in first spring GPA, the 



 

 

engineering graduation rate increases on average by 0.115 percentage points, holding all else 

constant. The highest overall unstandardized effect size is 0.894, which correlates the transfer BP 

GPA with the first fall GPA. 

Table 2 Regression Weights (Effect Sizes) 

Exogenous Endogenous Estimate S.E. P value Standardized  

Estimate 

act cmpst Tr BP GPA .041 .006 <0.001 .294 

Tr BP GPA first fall GPA .894 .079 <0.001 .469 

act math Tr BP Cr .299 .078 <0.001 .170 

first fall GPA first spring GPA .550 .038 <0.001 .555 

Tr BP Cr BP Cr -.608 .032 <0.001 -.660 

first fall GPA first spring Cr .423 .136  0.002 .138 

first fall Cr first spring Cr .560 .117 <0.001 .555 

BP Cr BP GPA .021 .006 <0.001 .130 

first fall GPA BP GPA .303 .101  0.003 .286 

first spring GPA BP GPA .425 .043 <0.001 .398 

act math BP GPA .044 .008 <0.001 .173 

first spring GPA EngGrad .115 .025 <0.001 .242 

first spring Cr EngGrad .012 .006  0.055 .079 

Tr BP Cr_ EngGrad .013 .003 <0.001 .200 

first fall Cr EngGrad .030 .006 <0.001 .195 

first fall GPA EngGrad .060 .027  0.029 .126 

BP GPA EngGrad .051 .027  0.062 .114 

 

Table 3 gives the squared multiple correlations for each endogenous variable.  This measures the 

proportion of variation for each endogenous variable attributable to its set of exogenous 

variables. For example, it is estimated that the predictors of BP GPA explain 57.4 percent of its 

variance, which is the highest amount of explained variance among the endogenous variables. 

Also, the predictors of graduation in engineering explain 34.8 percent of the variance in that 

outcome. 

Table 3 Squared Multiple Correlations 

Variable Estimate 

Tr BP GPA .087 

first fall GPA .218 

Tr BP Cr .029 

BP Cr .420 

first spring GPA .401 

BP GPA .574 

first spring Cr .138 

EngGrad .348 

 



 

 

Table 4 shows the unstandardized total effect (which is a combination of direct and indirect 

effects) of each row (exogenous) variable on each column (endogenous) variable. For example, 

the total (direct and indirect) effect of transfer BP GPA on graduation in engineering is 0.139, 

due to both direct (unmediated) and indirect (mediated) effects of transfer BP GPA on graduation 

in engineering. The top five unstandardized total effects on graduation in engineering (in terms 

of percentage point increases) are: 

 when Tr BP GPA goes up by 1 unit, EngGrad goes up by 0.139 on average 

 when first fall GPA goes up by 1 unit, EngGrad goes up by 0.155 on average 

 when first spring GPA goes up by 1 unit, EngGrad goes up by 0.137 on average 

 when first fall Cr goes up by 1 unit, EngGrad goes up by 0.037 on average 

 when BP GPA goes up by 1 unit, EngGrad goes up by 0.051 on average 

Table 4 Unstandardized Total Effects 

 BP GPA EngGrad 

act cmpst  0.02 0.006 

act math  0.041 0.006 

Tr BP GPA  0.479 0.139 

first fall GPA  0.536 0.155 

Tr BP Cr -0.013 0.012 

BP Cr  0.021 0.001 

first spring GPA  0.425 0.137 

first fall Cr  0 0.037 

BP GPA  0 0.051 

first spring Cr  0 0.012 

 

Table 5 shows the standardized total effect of each exogenous variable on the endogenous 

variables in terms of standard deviation units. This illustrates the portion of the effect that is due 

to the exogenous variable and the portion of the effect that is due to indirect effects mediated 

through other variables. For example, the standardized total (direct and indirect) effect of first 

fall GPA on graduation in engineering is 0.329. The total direct effect of first fall GPA on 

graduation in engineering is 0.126, which represents 61.7 percent of the total effect. 

Modification indices were employed in preliminary models to indicate whether new parameters 

should be included. The resulting model has no remaining modification indices that exceed the 

specified threshold in chi-square units. 

  



 

 

Table 5 Standardized Total Effects 

Exogenous Endogenous 
Total  

Effect 

Direct 

Effect 

Indirect 

Effect 

Indirect  % 

of Total 

act cmpst Tr BP GPA 0.294 0.294 0 0 

act cmpst first fall GPA 0.138 0 0.138 100 

act cmpst first spring GPA 0.077 0 0.077 100 

act cmpst BP GPA 0.070 0 0.070 100 

act cmpst first spring Cr 0.019 0 0.019 100 

act cmpst EngGrad 0.045 0 0.045 100 

act math Tr BP Cr 0.170 0.170 0 0 

act math BP Cr -0.112 0 -0.112 100 

act math BP GPA 0.159 0.173 -0.014 -8.8 

act math EngGrad 0.052 0 0.052 100 

Tr BP GPA first fall GPA 0.469 0.469 0 0 

Tr BP GPA first spring GPA 0.260 0 0.260 100 

Tr BP GPA BP GPA 0.237 0 0.237 100 

Tr BP GPA first spring Cr 0.065 0 0.065 100 

Tr BP GPA EngGrad 0.154 0 0.154 100 

first fall GPA first spring GPA 0.555 0.555 0 0 

first fall GPA BP GPA 0.506 0.286 0.220 43.5 

first fall GPA first spring Cr 0.138 0.138 0 0 

first fall GPA EngGrad 0.329 0.126 0.203 61.7 

Tr BP Cr BP Cr -0.660 -0.660 0 0 

Tr BP Cr BP GPA -0.086 0 -0.086 100 

Tr BP Cr EngGrad 0.191 0.200 -0.009 -4.7 

BP Cr BP GPA 0.130 0.130 0 0 

BP Cr EngGrad 0.015 0 0.015 100 

first spring GPA BP GPA 0.398 0.398 0 0 

first spring GPA EngGrad 0.287 0.242 0.045 15.7 

first fall Cr first spring Cr 0.555 0.555 0 0 

first fall Cr EngGrad 0.239 0.195 0.044 18.4 

BP GPA EngGrad 0.144 0.144 0 0 

first spring Cr EngGrad 0.079 0.079 0 0 

 

Discussion 

The objective of this study was to explore SEM statistical models of the academic variables that 

influence the completion of a BS degree in engineering for CC transfer students. The SEM 

approach estimates the covariance structure based on hypothesized relationships between the 

academic variables and the outcome of graduation. Unique in this study is the use of continuous 

academic variables from both the sending (CC) and the receiving (SU) institution. An 

understanding of these relationships may promote success for CC transfers to engineering, which 

in turn may increase the number and diversity of engineers in the workforce
8,9

. 

 



 

 

The first research question was to determine the strengths of the relationships, as determined by a 

SEM model, between academic variables in core engineering coursework and graduation in 

engineering for CC transfer students Two important relationships to academic outcomes were 

explored: variables that correlated with completion of the core engineering requirements (the BP 

GPA) and variables that correlated with graduation in engineering including the mediating effect 

of BP GPA. The predictors with significant positive direct effects on BP GPA were: the ACT 

mathematics score, the first fall GPA (after transfer), the first spring GPA (after transfer), and the 

total number of BP credits taken at SU. The variables with the highest effect sizes for 

determining BP GPA are first spring GPA (0.425) and first fall GPA (0.303). 

In addition to BP GPA, the other predictors that had positive direct effects on graduation in 

engineering were: the number of transfer credits counting toward BP courses, the number of first 

fall credit hours, first fall GPA, the number of first spring credit hours, and first spring GPA. The 

variable with the largest effect size in determining graduation in engineering is first spring GPA, 

with an effect size of 0.115. These findings suggest that reasonable advice to students and their 

advisors is to focus on coursework that applies to the BP in engineering at the transfer institution. 

In terms of the unstandardized total effects on graduation in engineering, the following increases 

in academic variables correspond to increases in the engineering graduation rate and illustrate a 

possible scenario for the magnitude of increases that have significant effects on graduation rates 

in engineering: 

 when Tr BP GPA goes up by 1 unit, EngGrad goes up by 0.139 on average 

 when first fall GPA goes up by 1 unit, EngGrad goes up by 0.155 on average 

 when first spring GPA goes up by 1 unit, EngGrad goes up by 0.137 on average 

 when first fall Cr goes up by 1 unit, EngGrad goes up by 0.037 on average 

 when BP GPA goes up by 1 unit, EngGrad goes up by 0.051 on average 

The results of this study emphasize the importance of early success in core courses (the BP in 

engineering) for attainment of an engineering degree. These findings reinforce the results of 

previous research conducted by Whalen and Shelley,
13

 who found that the most important 

predictor of retention in STEM fields is grade point average. They found a dramatic increase in 

six-year retention and graduation rates for as little as a 0.10 increase in GPA for STEM majors. 

Schools have found that success strategies such as tutoring, supplemental instruction, and 

counseling are effective in helping students complete these high-risk courses with better grades
2
. 

After controlling for student’s pre-entry characteristics, Shelley and Hensen
21

 found that 

supplemental instruction participants in engineering mathematics and physics courses earned 

significantly higher percentages of A and B grades, significantly lower percentages of D and F 

grades and withdrawals, and significantly higher mean final course grades than did non-SI 

participants. 

Collaborative learning strategies are a well-documented way to increase grades in difficult 

courses
22, 23

.  Many men and women who form study groups report that they both enjoy their 

work more and feel they learn more because of the academic discussions in these groups. 

“Collaborative learning strategies solve two of the most vexing pedagogical programs: large 

class sizes and gross differences in education preparation.”
 24

 



 

 

Placement in pre-calculus has validity in increasing success rates. Purdue University found that 

students placed in pre-calculus who successfully mastered the material (defined by earning an A 

in the course) were enabled to have similar retention rates as those with mathematics SAT score 

advantages of up to one hundred points
2
. 

Academic variables occurring after transfer generally correlate higher with graduating in 

engineering than do the pre-collegiate or other transfer variables employed in this study. This 

finding emphasizes the need for transfer students to be prepared for the academic rigor after 

transfer. Enrollment partnership programs have been shown to create a smoother transfer 

process, which in turn may lead to improved grades
25

. The National Academy of Sciences 

recently published a report indicating that students often begin their two- or four-year study with 

too little preparation.  Preparation in mathematics, reasoning, and critical thinking are necessary 

for students to succeed in STEM careers
26

. This will aid students with early success in variables 

shown to correlate with graduation in engineering 
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